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Concise expression of a classical radiation spectrum
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In this paper we present a concise expression of the classical electromagnetic radiation spectrum of a
moving charge. It is shown to be equivalent to the often used and much more complicated form derived
from the Lienard-Wiechert potentials when the observation distance R satisfies the condition R >>yA.
The expression reveals a relationship between the radiation spectrum and the motion of the radiation
source. It also forms the basis of an efficient computing approach, which is of practical value in numeri-
cal calculations of the spectral output of accelerated charges. The advantages of this approach for
analytical and numerical applications are discussed and the bending-magnet synchrotron radiation spec-

trum is calculated according to the approach.

PACS number(s): 41.60.Ap, 03.50.De, 41.85.Lc

I. INTRODUCTION

It is well known that when a charged particle is ac-
celerated, it radiates electromagnetic waves. One of the
basic properties of interest is the radiation spectrum,
defined by the energy radiated into a unit frequency inter-
val and unit area or solid angle. The geometry of this
kind of problem and the symbols used in this paper are
shown in Fig. 1. Equations (1) and (2) are used to calcu-
late this spectrum. They are well known [1] and widely
used in spite of their complexity.
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Equation (1) is exact and Eq. (2) is a simplified form valid
only for the infinitely far-field region. Equation (2) is the
most widely used form because of its simplicity. Howev-
er, in both equations, the relationship between the charge
motion and its radiation spectrum is rather obscure. In
this paper we present the following expression:
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where ¢ is the observer time and “‘ret” means n should be
calculated at the retarded time . We will prove that this
form is equivalent to the much more complicated form
Eq. (1), when the observation distance R >>yA. More-
over, the significance of this expression will be discussed
in Sec. III.
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The desire to use the electromagnetic radiation of mov-
ing charges has led to the construction of many synchro-
tron radiation light sources [2,3]. To utilize effectively
this radiation one must be able to calculate its charac-
teristics in detail [4-9], especially in synchrotron radia-
tion research, where specially designed magnetic struc-
tures are used to control electron motion [10,2-5].
However, it turns out that the numerical spectrum calcu-
lations of nonideal trajectories are rather time consum-
ing. As a significant result of Eq. (3), we show an alterna-
tive approach to calculate the radiation spectrum. When
implemented numerically, this approach provides a very
efficient computational method for spectrum calculation.

As a related exercise, we present a proof of a concise
expression of the electric field of a moving charge that
appeared in the Feynman lectures [11],
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This form is remarkable because the third term, which
describes the main radiation field, is simply a second
derivative of the direction vector from the radiating
charge to the observer. The formula Eq. (3), which has
not been described in the literature, can be derived from

FIG. 1. Reference frame and symbols used in analysis.
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Feynman’s expression. In Sec. II we show that Eq. (4) is
identical to the more complicated, but widely used ex-
pression [1]
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In Sec. IIT we derive Eq. (3) and show the conditions un-
der which it is valid. Then we discuss the significance of
Eq. (3) and present an efficient approach to calculate the
radiation spectrum. To show how the approach works
analytically, in Sec. IV, Eq. (3) is used to calculate the
well-known synchrotron radiation spectrum from a bend-
ing magnet [1,12].

A brief historical review of Eq. (4) may be interesting.
Though rarely used, it was first obtained by Heaviside in
1902 and rediscovered by Feynman in 1950. A proof of
Eq. (4) directly from the four-vector potential of elec-
tromagnetic field was given in Ref. [13].

II. THE HEAVISIDE-FEYNMAN EXPRESSION
OF ELECTRIC FIELD OF MOVING CHARGE

Here we begin with Eq. (4) from Feynman and show
that it is equivalent to Eq. (5). For brevity, we drop the
constant factor e /41e in this section.

The relationship between the observer’s time ¢ and the
particle time 7 is

t=7+R(7)/c . (6)
Differentiating this equation we get
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Since 1—n-B is always positive, Eq. (7) guarantees there
is a one-to-one mapping between ¢ and 7. Thus we can
change between them whenever necessary. From the
definition of n and Eq. (7) we find that
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changed into
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The third term in Eq. (4) may be expressed in particle
time 7 as
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Calculating this derivative is tedious. It is accomplished
by using the vector identity AX(BXC)=(A-C)B
—( A-B)C repeatedly, by differentiating term by term,
and by collecting all B terms together. Via this process
we obtain
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The term 0n-B in Eq. (11) can be calculated by using Eq.
(8) as
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With these relations we can finish the differentiation in
Eq. (11) and obtain
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Thus the third term in Eq. (4) is

1.d
R dr

2 di?  (1—-nP 1-n B R?

_nXxX[(m=B)XB] 1 | _(nXB)?

1—n-B dr

nX(nXpB)

(1—n-B)°Rc R? | (1—n-B)?

1—n-B

1
1— . 14
y%(1—n-B)? ] ] (14



4360 CHUNXI WANG 47

Combining Eqgs. (9) and (14), and using Eq. (12), we ob-  The traditional way to calculate the spectral distribution

tain the relationship is to use Eq. (5), with 7 as the variable, which leads to Eq.
5 (1), the classic expression used for radiation calculations.

o Rdn + 1dn However, Eq. (1) is rather complicated in form. Thus the
R* ¢ dt R? ¢? ar? simpler form, Eq. (2), which is based on a far-field ap-
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which shows that Feynman’s expression, Eq. (4), is exact-  way to do this is to use Eq. (4) and the observer time ¢ as
ly equal to the generally used expression, Eq. (5). Feyn- the independent variable, that is,
man interestingly interpreted the first two terms of Eq. (4) ) 2
as the static Coulomb field and the first-order correction a1 _ 1 e’c
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OF RADIATION SPECTRUM

The primary goal of most radiation calculations is to 10 Show that the first two terms in Egq. (17) are negligible,
obtain the energy spectrum. It is well known that the W€ first use Egs. (8), (9), and the derivative theorem of the

spectral distribution of the total energy radiated into a  Fourier transform [14]:
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From Eq. (19a), if R >>A=c /o, we can omit the first term because it has the same direction as the third term and has a
negligible magnitude. Similarly, from Eq. (19b), we see that the second term will be negligible also if the ratio of the
second term to the third term,
2
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is small, which is true when R >>2yA. From these arguments we conclude that if the observation distance satisfies the
condition
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then the first two terms in Eq. (17) are negligible. The third term is a complete second derivative of the vector n; ac-
cording to Eq. (18), we obtain the rather simple form [15], Eq. (3).
Asa prehmmary check of Eq. (3), we integrate it over frequency and get
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which is the expected result, the electromagnetic flux
density integrated over time. Reference [9] gives numeri-
cal verification of Eq. (3) and the related integration
boundary problem concerned in numerical applications.

We have proved that the concise expression, Eq. (3), is
equivalent to the much more complicated standard ex-
pression Eq. (1) if Eq. (21) is satisfied, which is true in
most practical applications. Both expressions represent
the spectrum of the radiation field generated by a moving
charge. Equation (1) works with the retarded time 7.
Though complicated in form, it is often convenient for
analytical calculations due to the difficulty explained in
Sec. IV. Equation (3) works with the observer time z. It
is very concise and of significance to both theoretical rep-
resentation and practical computation of the radiation
spectrum.

In addition to its conciseness, Eq. (3) reveals an impor-
tant relationship between the trajectory of a charge and
its radiation spectrum. The physical meaning of the
direction vector n is quite clear and, according to Eq. (3),
the radiation spectrum is just the Fourier transform of n.
This understanding allows one to obtain a great deal of
insight into the properties of radiation from knowledge of
the Fourier transform and the particle trajectory. For ex-
ample, in an undulator, electrons undulate periodically
along a straight orbit [5]. According to Eq. (3), it is evi-
dent that the radiation will be linearly polarized if the
electron moves in a plane and elliptically polarized if the
electron moves in a spiral. Moreover, from the proper-
ties of the Fourier transform we know that the spectrum
will consist of peaks having the same width, which is in-
versely proportional to the number of periods of the de-
vice.

Another important result of Eq. (3) is an alternative
way to calculate the radiation spectrum. Instead of
working with the complicated Eq. (1), one can calculate
the direction vector n(¢) in the observer time frame and
then do a Fourier transformation. As an illustration of
this approach we will obtain the bending-magnet syn-
chrotron radiation spectrum in the next section using Eq.
(3). However, the most important advantage of this ap-
proach is in numerical calculation of the radiation spec-
trum. Because n(¢) can be easily calculated numerically
and the Fourier transformation can be done very
efficiently with the well-known fast-Fourier-transform
(FFT) method [14], such an approach provides the most
J
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Because wyr<<1 and R, =7, the higher-order terms can
be omitted. Therefore, to the lowest order of wyr, Eq.
(24) can be written as

R R
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r 2 r
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efficient computational method to calculate the radiation
spectrum of an arbitrarily moving charge. It is of practi-
cal value in synchrotron radiation research, where nu-
merical methods have to be used to compute the radia-
tion spectrum because of the nonideal trajectory resulting
from the magnetic field errors. The computational
method presented here could be several orders faster than
a straightforward integration of Eq. (1). Moreover, Eq.
(3) is applicable to the near-field case [6,7], where numeri-
cal methods are usually necessary because of the
mathematical complexity. In addition, only the trajecto-
ry n is needed in Eq. (3) instead of n,,B in Eq. (1), so the
requirement for storage of velocity and acceleration is re-
moved when using Eq. (3) to calculate spectrum. Also
one does not need to calculate the derivative of velocity,
which is an error-sensitive process. In conclusion, the
present computational approach has fundamental impor-
tance for efficient radiation spectrum calculation and is of
practical value in synchrotron radiation research. A de-
tailed discussion of the numerical aspects of the present
expression and its application in insertion device synchro-
tron radiation calculations appears in Ref. [9].

IV. BENDING-MAGNET
SYNCHROTRON RADIATION SPECTRUM

The synchrotron radiation from a bending magnet is
produced by a charged particle moving along a circular
trajectory under the influence of a uniform magnetic
field. We use the Cartesian coordinate system shown in
Fig. 2 and assume that the charge moves in the x-z plane
with a trajectory radius R, and a circular frequency w,.
So we can write the trajectory as

x =Rg(coswgr—1) ,
y=0,

(23)
z=Rsinwyr ,

B=woRy/c=1.

If the observer is located at (0,70,r), we can write the
direction vector as

n= ——I—(Ro( 1—coswqr),r8,r —Rysinwyr) ,

R(7) (24)

where the distance between the observer and charge is
2 .
R sinwgT

1+ 62

(25)

To get the function 7(¢) used in Eq. (3), we have to solve
Eq. (6). Usually it is difficult to derive an analytical func-
tion for 7(¢). This is the main factor limiting the use of
Eq. (3) in analytical calculations. However, in the present
case we are able to get a sufficiently accurate solution.
Using the above expression for R(7) and dropping the
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FIG. 2. Coordinate system used in Sec. IV.

constant term we get
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where the last identity of Eq. (23) is used. As in previous
derivations [1], we just keep up to the third-order term of
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dropping constant terms, Eq. (3) becomes
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We see that the y component of the electric field is retard-
ed in phase by 7 /2 relative to the x component when
6>0, i.e., above the orbit plane. Equations (33) and (35)
are the same as the standard results. Detailed calcula-
tions of the Fourier transform in Egs. (32) and (34) are
shown in the Appendix.

V. CONCLUSIONS

The classical radiation spectrum of moving charges
can be expressed in the form

clearer and more concise relationship between radiation
properties and the trajectory of the radiating charge.
Therefore one can get more intuitive understanding of
the radiation properties from knowledge of the particle
trajectory and the Fourier transform. We also developed
an alternative approach to calculate the classical radia-
tion of moving charges. This approach may not make
analytical calculations easier because of the difficulty of
getting an analytical function 7(¢). But, it does simplify
numerical calculations significantly when the FFT is ap-
plicable. The approach is a very efficient computational
method to calculate radiation spectra, and of practical
value in synchrotron radiation research.
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APPENDIX

To calculate the Fourier transforms in Egs. (32) and
(34), we introduce two symbols:

ne=(n*+1)1"2+q (A1)

and notice that n n_=1 and 7, +n_=2(n*+1)1"2
The Fourier transform in Eq. (32) is
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. [(x2+32)1/2+x ]v+[(x2+32)1/2__x 1v _ . ..1_’1
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are used. Similarly, the Fourier transform in Eq. (34) is found with the identity [16]
- 24 g2)122 20 @\1/2__ v
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